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Joint models are an increasingly popular way to characterise the relationship between 
one or more longitudinal responses and an event of interest. However, for multivariate 
joint models the increased dimensionality and complexity of random effects present in 
the model specification are commensurate with increased computing time, hampering 
the implementation of many classic approaches. An approximate EM algorithm which 
ameliorates the so-called ‘curse of dimensionality’ is developed. The scaleability and 
accuracy of the proposed method are demonstrated via two simulation studies and applied 
to data arising from two clinical trials in the disease areas of cirrhosis and Alzheimer’s 
disease, each with three biomarkers.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many scientific investigations, such as clinical trials, involve the repeated measurement of continuous responses over a 
period of follow-up as well as an event time of interest. For example, numerous biomarker measurements in a randomized 
drug trial and the time to mortality from the baseline visit. A raft of such studies are detailed at the LONI Image Data Archive 
https://ida .loni .usc .edu. When interest then falls on characterising the relationships between these longitudinal responses 
and the event time, joint models have emerged as a popular modelling strategy, exhibiting superiority over both separate 
analyses of the two data types and two-stage approaches.

At heart, a joint model consists of two or more sub-models with (at least) some shared random effects that are combined 
into one larger meta-model by linking the shared random effects. Following on from the early work by Wulfsohn and Tsiatis 
(1997), commonly adopted submodels are a linear mixed effects model (Laird and Ware, 1982) and a Cox proportional 
hazards model (Cox, 1972) for the longitudinal and survival components respectively. Justification for joint models over 
naive or two-stage approaches abound in the literature - see Ibrahim et al. (2010) for one such example.

Until recently, joint models, and their application, have predominantly appeared in the literature in the form of a joint 
model specification with a single longitudinal outcome (‘univariate joint modelling’). Joint models with more than one lon-
gitudinal response (‘multivariate joint modelling’) have existed in literature for nearly two decades, but are usually focused 
on methodological developments (Lin et al., 2002; Song et al., 2002) and bring with them unique challenges. Simply fit-
ting several separate univariate joint models does not take into account correlations between the longitudinal responses of 
interest (Lin et al., 2002) and is tantamount to omitting potentially important responses in the survival sub-model, which 
could be to the detriment of prediction (Hickey et al., 2018a). Whilst one review of computational methods found a relative 
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abundance of software for fitting univariate joint models (Furgal et al., 2019), another for multivariate joint models found 
software for fitting such models was lacking (Hickey et al., 2016), only recently remedied, in part, by development of new R
software packages joineRML (Hickey et al., 2018a) and extensions to existing R packages, such as JMBayes (Rizopoulos, 
2016). However, despite this progress, it is not clear that existing methods will prove scaleable to situations involving many 
longitudinal measurements, rich random effect structures, or both.

Joint models were first proposed by Wulfsohn and Tsiatis (1997) who utilised numerical integration (via low-dimensional 
Gauss-Hermite quadrature) as part of an EM algorithm in order to circumvent the dependence on the unobserved random 
effects on the parameter estimates by treating them as missing data. In their relatively simple scenario this worked well 
and became the de facto approach in the early years of joint models. However, when the number of longitudinal measures, 
the complexity of the random effects structure, or both, grows then this approach becomes less viable due to the inherent 
computational burden - essentially the approach is not particularly scaleable - which has led to alternative fitting procedures 
being utilised throughout literature: For instance Monte Carlo techniques (Henderson et al., 2000; Lin et al., 2002; Hickey 
et al., 2018a) and Laplace approximations (Rizopoulos et al., 2009). However, as Hickey et al. (2018a) draw attention to, the 
perpetually increasing volumes of data collected by clinical trials with very many longitudinal responses and increasingly 
complex electronic healthcare records would likely require approximate methods for the numerical integration in the E-step.

One such approximate method is a recent approach put forward by Bernhardt et al. (2015) in the context of a joint 
model with a binary outcome. The authors proposed a normal approximation on the distribution of the random effects 
for each individual conditional on the observed data, which has the effect of reducing the dimensionality of each required 
integral to be uniformally one, regardless of the complexity of the random effects, thus improving computational efficiency.

The rest of the paper establishes the proposed multivariate joint model, which is an extension to the proposed model 
by Bernhardt et al. (2015) to the case of a survival outcome in place of a binary outcome. We first present the multivariate 
joint model in Section 2 and outline the standard approach to analysis, before introducing the approximate EM algorithm. 
Results from two comprehensive simulation studies are presented in Section 3 before two clinical applications to primary 
biliary cirrhosis data and Alzheimer’s data respectively are demonstrated in Section 4. As far as the authors are aware, the 
implementation of an approximate EM algorithm to a joint model with a time-to-event sub-model is novel.

2. Methods

In the following we set out the multivariate longitudinal and survival sub-models alongside some accompanying nota-
tion. We then define the joint likelihood we wish to maximise in the context of the EM algorithm before setting out the 
approximate EM algorithm.

2.1. Models and notation

For each subject i = 1, . . . , n we observe Y i = (Y i 1, . . . , Y i K ) where each Y ik, k = 1, . . . , K denotes the kth longitudinal 
response vector of interest Y ik = (

yi1k, . . . , yimikk
)
, where the K responses are measured mik times, which can differ between 

subjects and longitudinal responses. We observe a (possibly right-censored) event time Ti = min(T ∗
i , Ci), where T ∗

i is the 
true event time and Ci the potential censoring time. In addition we introduce a failure indicator �i which is set equal to 
one if T ∗

i < Ci and zero otherwise. It is assumed that the censoring process is independent and non-informative.
We adopt the following linear mixed-effects model for the kth longitudinal response

Y ik = Xik(t)βk + Zik(t)bik + εik

bik ∼ N(0, Dk), εik ∼ Nmik (0,σ 2
εk

), bik ⊥⊥ εik,
(1)

where Xik is the (possibly time-dependent) fixed effects design matrix and βk the corresponding pk-vector of coefficients. 
Likewise, Zik is a (possibly time-dependent) random effects design matrix and bik the subject-specific qk-vector of random 
effects. These random effects are assumed to follow a multivariate normal distribution with zero-mean and positive-definite 
covariance matrix Dk .

The sub-model for the time-to-event response is

λi(t) = λ0(t)exp

{
K T

i η +
K∑

k=1

γk Zik(t)bik

}
, (2)

where K i is the pS -vector of baseline covariates of interest to the event time process; η the corresponding vector of fixed 
effects and λ0(t) an unspecified baseline hazard. In order to establish a latent association we introduce the random effects 
structure from the linear mixed model (1) with association parameter vector γ = (γ1, . . . , γK ) although other formulations 
are possible within this framework (Hickey et al., 2016). Going forward, we assume that the structure of the random effects 
is in the form of a random intercept and slope, Zikbik = b0ik + b1ikt ik ∀ k = 1, . . . , K unless stated otherwise. We note that 
the induced association between (1) and (2) is a relatively simple one, however even with a random effects structure such 
as this, under traditional approaches it is expected that computational times will grow exponentially large as the number 
of longitudinal responses – thus the dimensionality of the random effects and subsequent integration – grows large.
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2.2. Likelihood

For each subject i we construct block diagonal matrices for the covariate information, Xi =⊕K
k=1 Xik , the random effect 

structure Zi =⊕K
k=1 Zik and error terms V i =⊕K

k=1 σ 2
εk
Imik . Here, Ix is an x × x identity matrix and 

⊕
denotes the direct 

matrix sum. Additionally we define bi = (bi 1, . . . , bi K ) and β = (
β1, . . . ,βK

)
as the collection of subject-specific random 

effects and fixed effects, respectively, across the K longitudinal responses and D is the covariance block matrix across the 
K responses consisting of the Dk on the diagonal and the covariance matrices between responses on the off-diagonal.

The observed data likelihood for the joint model is then

n∏
i=1

⎧⎨
⎩

∞∫
−∞

f (Y i|bi;β,σ 2
ε1

, . . . , σ 2
εK

) f (Ti,�i |bi;η,γ ) f (bi |D)dbi

⎫⎬
⎭ . (3)

Where f (Y i |·) is the density for the longitudinal responses, f (Ti, �i |·) that for the time to event and f (bi |·) the random 
effects. The detailed forms of each density present in (3) are given in Appendix A. Subsequently, we introduce the param-
eter vector � = (

β, σ 2
ε1

, . . . , σ 2
εK

,η,γ ,vech(D)
)
, where vech(D) denotes the half-vectorisation of covariance matrix D , thus 

containing all unique elements.

2.3. Parameter estimation via the EM algorithm

When faced with missing data in the form of unobserved random effects, the Expectation Maximisation (EM) algorithm 
is a useful and widely-used construct, allowing for maximisation of the observed data (log) likelihood via the construction 
of a complete data (log) likelihood - whose expected value is found in the E-step, with respect to the unobserved random 
effects conditional on the observed data - and a series of maximum likelihood parameter updates that form the subsequent 
M-step. Under a joint modelling framework, the complete data for subject i is {Y i, Ti,�i, bi}; all are observed other than 
the random effects bi , which, as such, are treated as missing data.

The form of the expected log-likelihood for subject i in the E-step is then

Q (�|�̂) =
n∑

i=1

Ei

[
log f (Y i|bi; �̂) + log f (Ti,�i|bi; �̂) + log f (bi |�̂)

]
. (4)

Such an expectation is taken with respect to the distribution of the random effects conditional on the observed data at the 
current set of parameter estimates f (bi |Y i, Ti, �i; �̂), with �̂ =

(
β̂, σ̂ 2

ε1
, . . . , σ̂ 2

εK
, η̂, γ̂ ,vech(D̂)

)
denoting said set.

The form of the M-step is widely reported in literature (Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Lin et 
al., 2002; Bernhardt et al., 2015), and closed form updates exist for all parameters except for η and γ , which are instead 
jointly updated by a one-step Newton-Raphson iteration. In practise, the M-step is formulated by computing n sets of 
expectations of the form Ei

[
g(bi)|Y i, Ti,�i; �̂

]
in the E-step, where g(bi) denotes some function of the random effects. For 

each estimate in the E- and M-steps, expectations are required with respect to the distribution f (bi |Y i, Ti, �i; �̂). Wulfsohn 
and Tsiatis (1997) showed that these could be calculated using Gauss-Hermite quadrature. However, as the number of 
random effects increases, it becomes infeasible to use this approach, which has led to the use of alternative methods for 
computation of the necessary expectations in the E-step (Henderson et al., 2000; Lin et al., 2002; Rizopoulos et al., 2009; 
Rizopoulos, 2012; Hickey et al., 2018a).

2.4. Approximate EM algorithm

As the number of longitudinal responses and/or the dimensionality of the random effects in (3) grows large, existing 
methods are likely to become computationally expensive. Bernhardt et al. (2015) proposed approximating the distribution 
of the random effects conditional on the observed data at the current set of parameter estimates as multivariate normal in 
a joint model with a binary outcome. This approximation then takes advantage of the fact that any linear combination of bi

would also be normal. Specifically, Bernhardt et al. (2015) use the normal approximation

bi |Y i, Ti,�i;� appx.∼ N(b̂i, �̂i), (5)

where b̂i is the value of the random effects bi which maximises the complete data log-likelihood at the current set of 
parameter estimates. Indeed, the posterior distribution of random effects in generalized linear mixed models have been 
shown to be asymptotically normal (Baghishani and Mohammadzadeh, 2012). The covariance matrix is defined as

�̂i =
{

−∂2 log f (Y i, Ti,�i,bi;�)

∂bi∂bT
i

∣∣∣∣
bi=b̂i

}−1

.
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Using the approximation in (5), the expectations necessary in the E-step are calculated with respect to a one-dimensional 
normal distribution. For example, for the update to fixed effect parameter β we require the expectation Ei [Zibi]. In actu-
ality this expectation – and ones to follow – are conditional upon the observed data; for ease of presentation we omit 
these terms. Using the approximation (5), this expectation is taken with respect to the univariate normal distribution 
N(Zi b̂i, Zi�̂i Z T

i ). Likewise, in the update for σ 2
εk

we require the expectation Ei [Xik(t)βk + Zikbik] which is taken with 
respect to the univariate normal distribution N(Xik(t)βk + Zikb̂ik, Zik�̂ik Z T

ik). Here, �̂ik refers to the matrix along the block-

diagonal of �̂i associated with the random effects structure on the kth response. For our survival sub-model, in order to 
update the baseline hazard λ0(t), association parameters γ and the fixed-effect survival coefficients η we require the ex-

pectation Ei

[
exp

{
K T

i η +∑K
k=1 γk Zikbik

}]
which once again is taken with respect to the univariate normal distribution 

N(K T
i η +∑K

k=1 γk Zikb̂ik, 
∑K

k=1 γ 2
k Zik�̂ik Z T

ik).
We use these normal distributions in tandem with Gauss-Hermite quadrature using three abscissae to evaluate the 

necessary expectations in the E-step of the approximate EM algorithm. The form of the M-step updates for all parameters 
are presented in Appendix B. We did not obtain material benefit from utilising the nine abscissae originally recommended 
by Bernhardt et al. (2015), though we speculate this could be an artefact of the logistic sub-model used there. Although 
somewhat surprising, the use of three quadrature points has been verified previously (Wulfsohn and Tsiatis, 1997; McCrink 
et al., 2013). We recognise that Monte Carlo methods could also be used here, but they are not explored in this instance.

2.5. Starting values and convergence details

1. We begin by obtaining initial estimates for the parameter vector �. This deviates somewhat from that outlined in 
Bernhardt et al. (2015):

i. Firstly, rather than obtaining initial conditions for the parameters present in the longitudinal sub-model from a 
series of univariate linear mixed model fits, we instead implement an EM algorithm for a multivariate mixed model. 
The (nested) initial conditions for this EM algorithm come from K linear mixed model fits, which can be obtained 
using standard packages, such as nlme (Pinheiro et al., 2021) or lme4 (Bates et al., 2015). Additionally, each of these 
K model fits allow one to obtain the best linear unbiased predictor of the random effects for the kth longitudinal 
response, bk .

ii. These random effects estimates are then used as covariates in a time-varying Cox model (using e.g. survival
(Therneau, 2015)), along with covariates K i which gives rise to initial conditions for (γ ,η).

2. Maximise log f (Y i, Ti, �i, bi; �) with respect to bi – through the use of optimisation function ucminf (Nielsen and 
Mortensen (2016), see Appendix C) – in order to obtain b̂i and subsequently �̂i .

3. Use approximation (5) to update parameter vector �(m) → �(m+1) .
4. Repeat steps 2. and 3. until the algorithm converges, which we define to have occurred when for the P parameters 

which construct �,

max

(
|�(m+1)

1 − �
(m)
1 |

|�(m)
1 | + ν

, . . . ,
|�(m+1)

P − �
(m)
P |

|�(m)
P | + ν

)
< ξ,

for some predetermined ξ which is sufficiently small. We introduce some small value ν to the denominators on this 
relative difference calculation to avoid numerical issues when parameters are close to zero. We employ the relative 
difference criterion due to the parameters being on different scales.

After the algorithm is deemed to have converged, standard errors could be obtained by inverting the observed informa-
tion matrix at our maximum likelihood estimates �̂. However, we note in practise that this is computationally expensive. 
Instead, we obtain standard errors via an approximation of the observed empirical information matrix (Lin et al., 2002; 
McLachlan and Krishnan, 2008; Hickey et al., 2018a)

Ĩ(�) =
n∑

i=1

si(�)si(�)T − n−1 S(�)S(�)T ,

where si(�) denotes the gradient vector of the conditional expectation of the complete data log-likelihood function (4) i.e.
the score statistic and S(�) = ∑n

i=1 si(�). McLachlan and Krishnan (2008) note that the right hand side at the MLEs �̂
should equal zero. However, it is included for completeness’ sake as �̂ are not technically MLEs (Bernhardt et al., 2015). 
These standard errors allow for derivation of confidence intervals for parameters we estimate. Bootstrap methods could 
additionally be used at greatly increased computational expense. Hickey et al. (2018a) provide a good, brief, overview of the 
pros and cons of the approaches to the standard error approximation adopted here.

With the methodology established, we undertake two simulation studies followed by two application case studies: One 
using primary biliary cirrhosis data and another using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
In the simulation studies, we control failure rate to allow for the approximate EM algorithm to have a longer, or shorter, 
4
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longitudinal profile. We also consider a range of sample sizes and vary the dimension of the longitudinal data, with choices 
of K of 3, 5 and 10 in order to fully demonstrate the accuracy and utility of the proposed method. All simulations and 
applications in the following sections were executed on a Macbook Air 1.8 GHz Intel core i5 with 8GB RAM using R version 
4.0.3. R code used to generate the simulation studies as well as to fit the approximate EM algorithm is available at https://
github .com /jamesmurray7 /ApproximateEM.

3. Simulations

3.1. Simulation I

We first consider a simulation with the same longitudinal, and random effect, parameter specification as that in 
Philipson et al. (2020). Specifically, we assume K = 3 longitudinal responses (‘trivariate’) for a simulated sample size of 
n ∈ {250,500,1000}. The joint model for k = 1, . . . , K is specified as{

Y ik = (βk0 + bik0) + (βk1 + bik1)t ik + βk2x1i + βk3x2i + εik

λi(t) = λ0(t)exp
{
η1x1i + η2x2i +∑K

k=1 γk(bik0 + bik1t)
}

,

with εik ∼ N(0, σ 2
k ) and t ik denoting the times the longitudinal measurement is available for subject i for response k; 

t ik = (0, . . . ,mik). Additionally, x1i and x2i represent a set baseline variables for subject i, in the form of a continuous 
N(0, 1) and binary Bin(1, 0.5) variable. The random effects bi are drawn from the multivariate normal N6(0, D) and a 
random intercept and slope is used in each model as shown above.

We set the true parameter value of the fixed effects β to be β1 = (0,1,1,1) ; β2 = (0,−1,0,0.5) and β3 =
(0,0,0.5,−0.5); variance components σ 2

k = 0.25 ∀ k = 1, . . . , K and elements of the covariance matrix D11 = D33 = D55 =
0.52; D22 = D44 = D66 = 0.22; D13 = D35 = −0.125, D15 = 0.125 and all remaining elements set to 0. The fixed effects in 
the survival model were η = (−0.10,0.30) and the association parameters were γ = (−0.50,0.75,0.50). As well as alter-
ing the simulated sample size, we alter the length of the profiles along with the proportion who fail in order to explore 
performance properties under profiles where increasingly more information is available in the algorithm: Simulating data 
under three profile lengths, one with a maximum profile length of six time-points on approximately a 50% failure rate 
(t ik = (0,1, . . . ,5), ‘short’); another with a maximum profile length of ten (‘medium’) under approximately 40% failure and 
one further (‘long’) with a maximum profile length of fifteen time-points with 30% failure rate. We simulate data under 
each of these combinations of profile lengths and sample size one hundred times.

Fig. 1 illustrates the accuracy in parameter estimates obtained for (η,γ ) by the approximate EM algorithm under the 
different profile lengths and sample sizes outlined above. In addition, using 95% coverage probability (CP, calculated from 
Wald-like confidence intervals across the one hundred simulations), we observe that the survival parameters (γ ,η) have 
good coverage; full details on a parameter-by-parameter basis are given in the Supplementary Materials. The parameters 
associated with the longitudinal sub-models β and σ 2

1 . . . , σ 2
3 are well-estimated with minimal coverage 0.91 observed 

across simulations for these parameters. Additionally, the variance of the random effects bi (i.e. diag(D)) are estimated with 
minimal CP 0.92. Full tabulation of all parameter estimates under the different profile lengths and sample sizes are given in 
the Supplementary Materials.

An additional simulation study where we inflate the baseline hazard by introducing a large η such that the distribution 
of survival times is skewed (with many early failure times) is presented in the Supplementary Materials. Here we observe 
that owing to γ being time varying, CP of the true values is much more accurate as the profile length increases from six to 
fifteen time-points.

3.2. Simulation II

Extending beyond simply the trivariate case, we seek to explore capabilities of the approximate EM algorithm in cases 
when a plethora of longitudinal biomarkers exist. To that end, we explore and compare model fitting capabilities when 
three, five and ten longitudinal responses are used in the multivariate joint model. We once more simulate data under the 
joint model{

Y ik = (βk0 + bik0) + (βk1 + bik1)t ik + βk2x1i + βk3x2i + εik

λi(t) = λ0(t)exp
{
η1x1i + η2x2i +∑K

k=1 γk(bik0 + bik1t)
}

,

with εik ∼ N(0, σ 2
k ) and t ik denoting the times the longitudinal measurement is available for subject i for response k; 

t ik = (0, . . . ,mik). Continuous (standard normal) and Bernoulli (p = 0.5) baseline covariates are represented via x1i and x2i
respectively. The random effects bi are drawn from the multivariate normal N2K (0, D) and a random intercept and slope 
is used in each model as shown above. To obtain sensible true parameter values we use univariate model fits from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, as a real wealth of biomarkers exist here, with their performance 
5
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Fig. 1. Estimates for the trivariate model produced by the approximate EM algorithm for the parameters associated with the survival sub-model, (η, γ ) on 
differing simulated sample sizes and profile lengths; horizontal lines signify the true parameter values.

Fig. 2. Elapsed time (s) taken for the approximate EM algorithm to converge and standard error calculations to be performed for simulations on differing 
number of longitudinal responses, K ∈ {3, 5, 10}. Simulated sample size is n = 500 and failure rate approximately 50%.

in univariate joint models established previously (Li et al., 2017). Full details are given in the Supplementary Materials and 
we consider an application of the method to the ADNI data itself in Section 4.2.

For all simulations we use sample size n = 500 and a failure rate which mimics that of conversion to Alzheimer’s in the 
ADNI study (≈ 50%); simulated longitudinal profiles were allowed a maximum of fifteen timepoints, corresponding to the 
75th percentile observed in the ADNI data.

Given the available profile length of fifteen timepoints in light of the results presented in the previous section, parameters 
are generally well-estimated under the K ∈ {3,5,10} simulation conditions here. A minimal coverage probability of 0.89 is 
observed for (γ , η) under K = 3 and the longitudinal parameters equally well estimated across K . Full tabulation, as well as 
graphical representation of these parameter estimates is given in the Supplementary Materials. Fig. 2 shows the progression 
of time taken for the approximate EM algorithm to converge and standard errors be calculated as the number of longitudinal 
responses simulated – thus the dimensionality of random effects – increases. Median time for convergence of the algorithm 
and calculation of the standard errors is 1.74 times slower moving from three to five responses, and only 1.40 times slower 
moving from five to the – much larger – ten. This lends credence to the scaleability of the approach used here.
6
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Fig. 3. Longitudinal trajectories for the three chosen biomarkers from the subset of the PBC data who experienced mortality. Black lines show individual 
trajectories and the thick black line show smoothed (LOESS) curve along with a shaded band representing the 95% confidence interval.

4. Data analysis

4.1. Application I

We consider the application of the approximate EM algorithm outlined in Section 2 to the set of primary biliary cirrhosis 
(PBC) data. The progression of PBC was studied in 312 patients between 1974 and 1984 (Murtaugh et al., 1994). The 
existence of multiple longitudinal biomarkers as well as information regarding a time to event of interest has led to the 
PBC data becoming a popular example in existing literature (Hickey et al., 2018a; Dai and Pan, 2018; Andrinopoulou and 
Rizopoulos, 2016; Dil and Karasoy, 2020). The PBC data has two event times of interest: Mortality or received transplant. 
For the purposes of this application we consider only mortality as the event time of interest.

We fit a trivariate joint model on three longitudinal responses of interest: serum bilirubin (measured in mg/dl); albumin 
(g/dl) and prothrombin time (seconds). The longitudinal trajectories for these three biomarkers are presented in Fig. 3. 
Furthermore, the profiles for serum bilirubin and prothrombin time appear to be quadratic in nature, which is reflected in 
our joint model specification below, wherein we additionally include a continuous covariate, (standardised) baseline age and 
a binary one, receiving the study drug (D-penicillamine):

log(Serum Bilirubin) = (β10 + b10) + (β11 + b11) × time + (β12 + b12) × time2

+ β13 × age + β14 × drug

Albumin = (β20 + b20) + (β21 + b21) × time + β22 × age + β23 × drug

(0.1 × Prothrombin)−4 = (β30 + b30) + (β31 + b31) × time + (β32 + b32) × time2

+ β33 × age + β34 × drug

λ(t) = λ0(t)exp

{
η1 × age + η2 × drug +

∑
k

γk Zk(t)bk

}
.

Table 1 presents the estimates (SEs) for model parameters of interest from the above specification. Computation time 
required for the approximate EM algorithm to converge and standard errors be calculated was 52 seconds. The fitted values 
for β in Table 1 show that receiving the active arm does not significantly alter longitudinal trajectories for any of the 
three biomarkers studied, nor the overall hazard rate. Whilst log(serum bilirubin) increases over time, both albumin and 
transformed prothrombin decrease on average. Appraising now the values for γ , we observe that patients who deviate 
upwards from the average study trajectory for log(serum bilirubin) are subject to increased hazard of experiencing the 
event. In contrast, those deviating upwards from the average trajectory in albumin measurements experience decreased 
hazard. Transformed prothrombin time does not appear to hold significant association with the hazard.
7
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Table 1
Parameter estimates for application to primary biliary cirrhosis data. Estimates are reported along with standard 
errors and 95% confidence interval (CI). Biomarker names are included and correspond with transformations taken 
in Section 4.1. ηage and ηdrug are time invariant survival parameters not corresponding to a specific biomarker 
and as such are reported separately.

Parameter Estimate SE 95% CI
Se

ru
m

bi
lir

ub
in

β10 0.534 0.088 [ 0.361, 0.707]
β11 0.160 0.026 [ 0.109, 0.212]
β12 0.003 0.003 [-0.003, 0.008]
β13 0.023 0.049 [-0.073, 0.120]
β14 -0.104 0.112 [-0.323, 0.115]
σ 2

1 0.092 0.003 [ 0.087, 0.097]
γ1 1.132 0.143 [ 0.851, 1.413]

A
lb

um
in

β20 3.541 0.035 [ 3.472, 3.610]
β21 -0.106 0.006 [-0.117, -0.094]
β22 -0.086 0.023 [-0.131, -0.042]
β23 0.032 0.044 [-0.054, 0.117]
σ 2

2 0.102 0.002 [ 0.098, 0.106]
γ2 -1.452 0.483 [-2.398, -0.505]

Pr
ot

hr
om

bi
n

β30 0.804 0.019 [ 0.766, 0.842]
β31 -0.031 0.008 [-0.047, -0.016]
β32 -0.003 0.001 [-0.004, -0.001]
β33 -0.042 0.012 [-0.064, -0.019]
β34 0.030 0.024 [-0.017, 0.076]
σ 2

3 0.020 0.001 [ 0.018, 0.021]
γ3 -0.899 0.995 [-2.849, 1.051]
ηage 0.703 0.096 [ 0.514, 0.892]
ηdrug -0.087 0.182 [-0.444, 0.271]

4.2. Application II

The Alzheimer’s Disease Neuroimaging Initiative (ADNI1) is a prospective cohort study which began in 2004. The first 
phase of the ADNI study (ADNI 1) recruited more than 800 individuals at differing stages of cognitive impairment (cogni-
tively normal, mild cognitive impairment (MCI) and early Alzheimer’s disease) - here we focus on the subset of patients with 
MCI at baseline. Patients re-attended multiple times across three years of follow-up. This gives rise to a wealth of longitudi-
nal measures: neuropsychological assessments; brain imaging; clinical measures and other biomarkers such as cerebrospinal 
fluid in combination with the time to event of interest of progression to Alzheimer’s disease (‘AD’) diagnosis.

Previous use of joint models for these data has considered a series of univariate fits, using standardised biomarkers 
which were subsequently ranked in terms of their significance in relation to conversion to Alzheimer’s disease (Li et al., 
2017). Subsequently, and recognising the difficulty in applying multivariate joint models, methods have been developed to 
reduce the dimensionality of the data using both functional principal component regression (Li and Luo, 2017) and partial 
least squares (Wang et al., 2020). The method introduced in this paper allows a multivariate joint model to be implemented 
directly.

We consider the trivariate model using the Alzheimer’s Disease Assessment Scale-Cognitive subscale (13 item, ‘ADAS-
13’); Functional assessment questionnaire (‘FAQ’) and MRI volumetric data of the middle temporal gyrus (‘MidTemp’), which 
were identified as the best-performing biomarkers in the cognitive, functional and neuroimaging domains, respectively, 
from univariate model fits (Li et al., 2017). For both ADAS13 and FAQ, a higher score indicates poorer cognition and greater 
functional dependence, respectively. Of the n = 384 of the original ADNI sample, we utilise only those with non-missing 
values for the three biomarkers above (n = 359; 93.4%). Fig. 4 displays the individual trajectories of the three biomarkers 
before AD conversion for the 188 (52%) patients who progressed to AD during study follow-up.

We construct each of the longitudinal sub-models to be of the following form (6) wherein one notes uniform use of 
the random intercept and slope. In the survival sub-model, we arbitrarily select only a continuous covariate in the form of 
the patient’s (standardised) age at baseline visit and a binary one with presence of one or more apolipoprotein E ε4 alleles 
(‘APOE’, present for 55% of subjects in the analysis sample), which we additionally adjust the longitudinal models for; time 
is measured as years from baseline visit.{

Yk = (βk0 + bk0) + (βk1 + bk1) × time + βk2 × age + βk3 × APOE,

λ(t) = λ0(t)exp
{
η1 × age + η2 × APOE +∑K

k=1 γk(bk0 + bk1t)
}

.
(6)

Table 2 presents the estimates and associated standard errors for the model parameters of interest in our application to 
the ADNI data. The time for the EM algorithm to converge and SEs be calculated was 98 seconds. Inspecting this trivariate 

1 Data used in preparation of this section were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni .loni .usc .edu). As 
such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or 
writing of this report.
8

http://adni.loni.usc.edu


J. Murray and P. Philipson Computational Statistics and Data Analysis 170 (2022) 107438
Fig. 4. Longitudinal trajectories for the three chosen biomarkers from the subset of the ADNI data who experienced AD conversion. Black lines show 
individual trajectories and the thick black line shows a smoothed (LOESS) curve along with a shaded band representing the 95% confidence interval.

Table 2
Parameter estimates for application to ADNI data. Estimates are reported along with standard errors and 95% 
confidence interval (CI). Biomarker names are included and parameter estimates correspond to their standard-
ised forms; ‘MidTemp’ refers to the middle temporal gyrus volume. ηage and ηAPOE are time invariant survival 
parameters not corresponding to a specific biomarker and as such are reported separately.

Parameter Estimate SE 95% CI

A
D

A
S-

13

β10 -0.104 0.058 [-0.218, 0.009]
β11 0.247 0.023 [ 0.201, 0.292]
β12 0.092 0.046 [ 0.001, 0.183]
β13 0.131 0.088 [-0.041, 0.303]
σ 2

1 0.182 0.010 [ 0.163, 0.201]
γ1 0.646 0.080 [ 0.489, 0.802]

FA
Q

β20 -0.260 0.088 [-0.433, -0.087]
β21 0.356 0.026 [ 0.305, 0.407]
β22 0.023 0.057 [-0.089, 0.136]
β23 0.129 0.103 [-0.073, 0.330]
σ 2

2 0.200 0.008 [ 0.185, 0.215]
γ2 0.527 0.073 [ 0.384, 0.671]

M
id

Te
m

p

β30 0.047 0.082 [-0.113, 0.207]
β31 -0.151 0.011 [-0.173, -0.128]
β32 -0.192 0.049 [-0.288, -0.097]
β33 -0.079 0.108 [-0.290, 0.133]
σ 2

3 0.037 0.001 [ 0.035, 0.040]
γ3 -0.132 0.077 [-0.283, 0.019]
ηage 0.044 0.098 [-0.149, 0.236]
ηAPOE -0.081 0.151 [-0.378, 0.216]

model fit we infer from the values of β that both ADAS13 and FAQ increase over time indicating a study-wide decline 
in cognition. Presence of the APOE allele does not appear to significantly alter the longitudinal trajectory of any of the 
biomarkers considered here, nor the global hazard after attenuation for the current values of the three biomarkers. The 
values for γ corroborate with the profiles shown in Fig. 3: For ADAS13 and FAQ scores, a score above study average results 
in increased risk of Alzheimer’s conversion, whilst the same is true for lower scores in MidTemp volume, albeit in a slightly 
less significant manner.

5. Discussion & future work

We have presented the successful implementation of the approximate EM algorithm put forward by Bernhardt et al. 
(2015) – originally performed on a logistic sub-model – on a survival one and demonstrated its scaleability for up to 
ten biomarkers. The method performs well when the longitudinal profiles have a reasonable length, as one might expect 
given the underlying approximate nature of the approach. Additionally we have presented the non-exponential growth in 
computation time as the number of random effects grows large. As such, the approach could be well suited to electronic 
healthcare data, which usually spans many years with many longitudinal biomarkers available so this could be the perfect 
setting for this approach.

Throughout all simulations presented in Section 3 and in the application in Section 4.2, we adopted an intercept-and-
slope random effects structure as well as utilising a mixture of this structure along with quadratic random effects in 
Section 4.1 couched in a multivariate joint model setting. However, the method may have broader use in a univariate 
9
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setting, where we note that existing methods for univariate joint models perform very well for a relatively small number 
of random effects (Furgal et al., 2019), but may suffer computational burden when more complex structures are used. We 
postulate that the approximate EM algorithm presented here should work for any reasonable random effect structure: for 
example inclusion of higher order terms, stationary Gaussian processes or spline terms. With this in mind, further work 
could include extending the method to operate under more complex random effects structures which are popular in the 
literature but have yet to find their way into routine use owing to computational complexity. Inclusion of spline terms could 
additionally enhance performance capabilities when only limited longitudinal profiles are available.

Due to the clinical importance of the survival of a specific disease, the patient’s survival is predominantly the endpoint 
of interest in joint modelling, where it is usually jointly modelled with a continuous longitudinal response, or multiple 
responses, as we have solely considered here. However we note the emergence of joint models containing a mixture of 
generalised linear mixed models (GLMMs), where we believe the approximate EM presented here is general enough to be 
applied to these emerging joint models.

For instance, a continuous (i.e. Gaussian) sub-model for the longitudinal response(s) may be inadequate given the nature 
of a specific biomarker. For instance Zhu et al. (2018) utilise a longitudinal (zero-inflated) Poisson model for daily cigarette 
count and a Cox PH model for time to study dropout. Indeed, in our application to the ADNI data in Section 4.2, the 
biomarkers ADAS-13 and FAQ exist on a bounded scale, and so could be modelled as counts under this generalised mixed 
model framework.

Beyond Poisson sub-models, one may also use ordinal specifications of the longitudinal response(s). Examples of this 
include He and Luo (2016), where a multilevel model is used for multiple longitudinal outcomes and a Cox PH model for 
the event time and Li et al. (2010), as well as Alam et al. (2021), whose joint model includes a partial proportional odds 
model for the longitudinal response (in a multivariate setting in the latter). A much more comprehensive review of joint 
models which utilise a GLMM sub-model is given in Hickey et al. (2016).

We could additionally consider alternatives and extensions with respect to the assumed univariate event time. For ex-
ample, there are instances where it is of importance to identify the status of a specific event, in which case the endpoint of 
interest is a binary variable. The joint model subsequently contains a continuous longitudinal response – modelled as per 
(1) – and a logistic model for the binary outcome, in place of the proportional hazards model (2) with association induced 
through the linear predictor. Hwang et al. (2011) introduce such a model for orthostatic hypotension with a single longitu-
dinal response, and Bernhardt et al. (2015) employ a multivariate joint model with three continuous longitudinal responses 
and a logistic sub-model for survival past a certain period of follow-up.

Furthermore, a joint model with a competing risks survival sub-model (Williamson et al., 2008; Li et al., 2010) would 
be more useful in circumstances where patients can experience multiple events of interest: For instance death or disease 
recurrence; recurrent events such as re-admission to hospital; or a succession of events such as transition between (e.g. 
worsening of) disease states (Hickey et al., 2018b). Additionally, joint frailty-copula models could be explored (Emura et al., 
2017; Peng et al., 2018; Sofeu et al., 2021), as the likelihood here also involves numerical integration with respect to the 
random effects.
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Appendix A. Likelihood

The observed data likelihood under the joint modelling framework is presented in (3). It is generally easier to work with 
the log-likelihood. The complete data log-likelihood for subject i is


 = log f (Y i |bi;β,σ 2
ε1

, . . . , σ 2
εK

) + log f (bi |D) + log f (Ti,�i |bi;η,γ ), (A.1)

where

log f (Y i |·) = −mi

2
log 2π − 1

2
log |V i| − 1

2
(Y i − Xiβ − Zibi)

T V −1
i (Y i − Xiβ − Zibi) ,

log f (bi |·) = −q

2
log 2π − 1

2
log |D| − 1

2
bT

i D−1bi,

log f (Ti,�i |·) = �i log λ0(Ti) + �i

[
K T

i η +
K∑

k=1

γk(1, Ti)
T bik

]
−

Ti∫
λ0(u)exp

{
K T

i η +
K∑

k=1

γk(1, u)T bik

}
du.

(A.2)
0
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In the above, mi =∑K
k=1 mik denotes the total number of longitudinal observations for subject i and q the dimensionality 

of random effects (i.e. q = 6 for three longitudinal responses each modelled with random intercept and slope).

Appendix B. M-step details

This section presents the score equations as well as parameter updates for each component of �, as well as the hazard, 
which we update at each EM iteration, but do not monitor for convergence of the algorithm.

B.1. Update for D

The update for the covariance matrix of the random effects D does not require any integration. The expectation on the 
relevant part of the log-likelihood from (A.1) is

Ei [log f (bi|D)] = Ei

[
−q

2
log 2π − 1

2
log |D| − 1

2
bT

i D−1bi

]

= −q

2
log 2π + 1

2
log |D−1| − 1

2
Tr
{

D−1 Ei

[
bib

T
i

]}
,

with score equation for D−1

∂ Ei [log f (bi |D)]

∂ D−1 = −1

2
D − 1

2
Ei

[
bib

T
i

]
=⇒ D̂ = Ei

[
bib

T
i

]
.

Using the normal approximation (5) to evaluate Ei

[
bib

T
i

]

Var [bi] = �̂i = Ei

[
bib

T
i

]
− Ei [bi] Ei [bi]

T =⇒ Ei

[
bib

T
i

]
= �̂i + b̂i b̂

T
i .

Thus the parameter update for D is

D̂ =
n∑

i=1

�̂i + b̂i b̂
T
i /n.

B.2. Update for β

The coefficients for the fixed effects for covariates in the longitudinal sub-model, β , appears in log f (Y i |·), the expecta-
tion of which is then

Ei [log f (Y i|·)] ∝
β

−1

2
Ei

[
(Y i − Xiβ − Zibi)

T V −1
i (Y i − Xiβ − Zibi)

]

= −1

2
(Y i − Xiβ − Ei[Zibi])T V −1

i (Y i − Xiβ − Ei[Zibi]) .

Then, making use of normal approximation (5),

Zibi
appx.∼ N(Zi b̂i, Zi�̂i Z T

i ) = N(μi, τ
2
i ),

we then obtain

Ẽ i
[

β

]= −1

2

ρ∑

=1

w


(
Y i − Xiβ − Zi b̂i − τi v


)T
V −1

i

(
Y i − Xiβ − Zi b̂i − τi v


)
,

where w
 and v
, 
 = 1, . . . , ρ are the quadrature weights and abscissae respectively obtained from the
gauss.quad.prob function from the R library statmod (Smyth, 2005). We can then form the score, and subsequently 
parameter update, for β .

∂ Ẽ i[
β ]
∂β

= X T
i V −1

i

ρ∑

=1

w


(
Y i − Xiβ − Zi b̂i − τi v


)
= 0

Xiβ
(

X T
i V −1

i

)
= X T

i V −1
i

ρ∑
w


(
Y i − Zi b̂i − τi v


)


=1
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X T
i Xiβ = X T

i

(
Y i − Zi b̂i −

ρ∑

=1

w
τi v


)
,

=⇒ β̂ =
(

n∑
i=1

X T
i Xi

)−1 n∑
i=1

X T
i

(
Y i − Zi b̂i −

ρ∑

=1

w
τi v


)
.

B.3. Update for σ 2
εk

As with the update for β , the variance terms only appear in log f (Y i |·). We make use of the fact that V i = σ 2
εk
Imik and 

formulate the expectation

Ei [log f (Y ik|·)] ∝
σ 2

εk

Ei

[
−1

2
mik logσ 2

εk
− 1

σ 2
εk

(
Y ik − Xikβk − Zikbik

)T (Y ik − Xikβk − Zikbik
)]

= −1

2
mik logσ 2

εk
− 1

σ 2
εk

(
Y ik − Xikβk − Ei[Zikbik]

)T (Y ik − Xikβk − Ei[Zikbik]
)
.

Next, we make use of the normal approximation (5) (and, essentially repeat same formulation in the update for β)

Zikbik
appx.∼ N(Zikb̂ik, Zik�̂ik Z T

ik) = N(μik, τ
2
ik).

Thus, we obtain

Ẽ i[
σ 2
εk

] = − 1

2
mik logσ 2

εk

− 1

σ 2
εk

(
Y ik − Xikβk − Zikb̂ik −

ρ∑

=1

w
τik v


)T (
Y ik − Xikβk − Zikb̂ik −

ρ∑

=1

w
τik v


)

And formulate the score equation for σ 2
εk

and subsequently its update, denoting A =
(

Y ik − Xikβk − Zikb̂ik −∑ρ

=1 w
τik v


)
for brevity.

∂ Ẽ i[
σ 2
εk

]
∂σ 2

εk

= − mik

2σ 2
εk

+ 1

2σ 4
εk

AT A = 0

mik

2σ 2
εk

= 1

2σ 4
εk

AT A,

giving

σ̂ 2
εk

=
n∑

i=1

ρ∑

=1

w


(
Y ik − Xikβk − Zikb̂ik − τik v


)T (
Y ik − Xikβk − Zikb̂ik − τik v


)
/

n∑
i=1

mik.

B.4. Update for λ0(u)

Before considering the form of the update to the baseline hazard – and indeed all parameters associated with the time-
to-event sub-model – we rewrite the log-likelihood for log f (Ti, �i |·) given in Appendix A as

log f (Ti,�i |·) = �i log λ0(Ti) + �i

[
K T

i η +
K∑

k=1

γk Fib
T
ik

]
− λ0(ui)exp

{
K T

i η +
K∑

k=1

γk Fui bik

}
, (B.1)

where we introduce Fi = (1, Ti), ui is a vector of failure times survived by subject i, up to and including the subject’s failure 
time, and Fui the design matrix on these failure times.
We now consider the expectation on the part of log f (Ti, �i |·) containing the baseline hazard

Ei [log f (Ti,�i |·)] ∝
λ0(·) Ei

[
�i log λ0(Ti) − λ0(ui)exp

{
K T

i η +
K∑

k=1

γk Fui bik

}]

= �i logλ0(Ti) − λ0(ui)Ei

[
exp

{
K T

i η +
K∑

k=1

γk Fui bik

}]
.
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We make use of normal approximation (5)

K T
i η +

K∑
k=1

γk Fui bik
appx.∼ N

(
K T

i η +
K∑

k=1

γk Fui b̂ik,

K∑
k=1

γ 2
k Fui �̂ik F T

ui

)
= N(μi, τ

2
i ). (B.2)

Thus,

Ẽ i[
λ0 ] = �i logλ0(Ti) − λ0(ui)

ρ∑

=1

w
 exp {μi + τi v
} .

Taking score equations, we can quite trivially form the update for λ0(u)

λ̂0(u) =
∑n

i=1 �i I(Ti = u)∑n
i=1

∑ρ

=1 w
 exp {μi + τi v
} I(Ti ≥ u)

,

where I(·) is the indicator function.

B.5. Update for (γ ,η)

Both the fixed effects for the covariates in the survival sub-model, η and the association parameters, γ appear only in 
the survival sub-model, the form of which is given in (B.1). We know from the previous section

Ẽ i[
(γ ,η)] = �i

[
K T

i η +
K∑

k=1

γk Fibik

]
−

ρ∑

=1

w
λ0(ui)exp {μi + τi v
} ,

wherein μi and τi are given by (B.2). The presence of exponents indicates the update will not be in closed form. We 
therefore undertake a one-step Newton Raphson iteration to update � = (γ ,η) at each M-step. The update is of the form

�̂ = � + S(�)/I(�),

where S(γ ) is a vector of length K + P s and I(�) a symmetric square information matrix of dimension (K + P s) × (K + P s), 
with P s denoting the number of covariates in the survival model to estimate.
Starting with the score S(�), we calculate

∂ Ẽ i[
(γ ,η)]
∂γk

= �i F T
i b̂ik −

ρ∑

=1

w
ξ
T Fui b̂ik + γk w
v
 [ξ 
 τi]

T ξ,

∂ Ẽ i[
(γ ,η)]
∂η

= �i K i − K T
i

ρ∑

=1

w
ξ,

where 
 denotes element-wise multiplication and we define

ξ = λ0(ui) 
 exp
{

K T
i η +∑K

k=1 γk Fui bik + v
τi

}
.

Thus, we form the score vector S(�) =
(

∂ Ẽ i [
(γ ,η)]
∂γ1

, . . . ,
∂ Ẽ i [
(γ ,η)]

∂γK
,

∂ Ẽ i [
(γ ,η)]
∂η

)
.

We wish to populate the information matrix where we let f = Ẽ i[
(γ ,η)].

I(�) = −

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2 f
∂γ 2

1
. . .

∂2 f
∂γ1γK

∂2 f
∂γ1η

...
. . .

...
...

∂2 f
∂γK γ1

. . .
∂2 f
∂γ 2

K

∂2 f
∂γK η

∂2 f
∂γ1η

T
. . .

∂2 f
∂γK η

T
∂2 f

∂η∂ηT

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where we calculate the following second derivatives

− ∂ f

∂γ 2
k

=
ρ∑


=1

w
b̂ik
T F T

ui

[
ξ 
 Fui b̂ik

]
+ γk v
w
b̂ik

T F T
ui

[
ξ 
 τ ∗

i 
 τ̃ik
]+ v
w
 [ξ 
 τi]

T ξ+

2γk v
w
 [ξ 
 τi 
 ξ ]T Fui b̂ik + 2w
γ
2

k v2



[
ξ 
 τi 
 ξ 
 τ ∗

i

]T
τ̃ik + γ 2

k v
w


[
ξ 
 ξτ 2

i

]T
τ̃ik;
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Fig. C.1. Benchmarks for one hundred maximisations of the complete data log-likelihood for simulated sample of size n = 250. optim was fit using the 
‘BFGS’ method.

− ∂ f

∂γp∂γq
=

ρ∑

=1

w
b̂i p
T Fui

[
ξ 
 Fui b̂iq

]
+ γq v
w
b̂i p

T F T
ui

[
ξ 
 τ ∗

i 
 τiq
]+ 2γp v
w
 [ξ 
 τi 
 ξ ]T Fui b̂iq+

2γpγq w
v2



[
ξ 
 τi 
 ξ 
 τ ∗

i

]T
τiq + γpγq v
w


[
ξ 
 ξ 
 τ ∗

i

]T
τiq;

− ∂2 f

∂η∂ηT
=

ρ∑

=1

w
 [diag(ξ)K i]
T K i;

− ∂ f

∂γk∂η
=

ρ∑

=1

w
 K T
i

[(
Fui b̂ik

)

 ξ

]
+ 2γk v
w
 K T

i [ξ 
 τi 
 ξ ] .

Here we have additionally included τ̃ik = diag(F T
ui

�̂ik Fui ) as well as τ ∗
i =

(∑K
k=1 γ 2

k F T
ui

�̂ik Fui

)− 1
2

. The above analytical 

implementation can be used, or numerical methods on Ẽ i [
(γ ,η)] to obtain the score vector and subsequently the Hessian 
matrix.

Appendix C. Choice of optimiser

One has a choice between a number of optimisation functions when using R. Included with base R are the functions
optim, nlm and nlminb. A plethora of pre-existing packages are available which perform non-linear optimisation required 
in the E-step exist for use with R.2 One such package is ucminf (Nielsen and Mortensen, 2016) and was considered due to 
syntactic similarities with optim. Fig. C.1 shows these four optimising functions benchmarked against one another for max-
imising log f (Y i, Ti, �i, bi; �) w.r.t bi ∀ i = 1, . . . , 250 from some simulated trivariate data (i.e. dimensionality of random 
effects q = 6) one hundred times. We used R package microbenchmark (Mersmann, 2019) for this benchmarking. One 
can additionally supply these optimisers with a gradient function, ∂ log f (Y i ,Ti ,�i ,bi ;�)

∂bi
. Irregardless of the optimiser, it is clear 

– and unsurprising – that providing the optimiser with a gradient function greatly improves computational efficiency under 
default control parameters. Furthermore, one can alter convergence criteria for the optimisers which improves efficiency 
further. For all model fits and simulations in the main paper, a relative difference of 0.001 was used in this maximisation 
step using ucminf

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107438.
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